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Intro and Goals
I Recent developments in Bayesian techniques applied to large

scale datasets or deep models include variational approaches
such as Automatic Differentiation Variational Inference (ADVI)
[1] and Stein Variational Gradient Descent (SVGD) [2], or
sampling approaches such as Stochastic Gradient Markov
Chain Monte Carlo (SG-MCMC) [3].

I Can we bridge the gap between variational and sampling
methods?
Yes, we propose an hybrid between SGLD and SVGD!

Background
I SG-MCMC [3]

1. Choose state space z ∈ Rd and target distribution
π ∝ exp(−H(z)).

2. Choose suitable diffusion D(z) and curl Q(z)) matrices.
3. Discretize the generalized Langevin dynamics:

z t+1← z t − εt [(D(z t) + Q(z t))∇H(z t) + Γ(z t)] + ηt,

where ηt is some carefully chosen Gaussian noise.
• Stochastic Gradient Langevin Dynamics (SGLD):

D = I and Q = 0.
• Hamiltonian variant (HMC): z̄ = (z,p).

D = 0 and Q =

0 −I
I 0



I SVGD [2] frames posterior sampling as an optimization process,
in which a set of K particles {z i}Ki=1 is evolved iteratively via

z i ,t+1← z i ,t − εt
1
KΣK

j=1
k(z j ,t, z i ,t)∇H(z j ,t) +∇z j ,tk(z j ,t, z i ,t)

 ,

where the RBF kernel k(z, z ′) = exp(−1
h‖z − z ′‖2) is typically

adopted. This velocity field is chosen so as to to maximize the
decreasing rate on the KL divergence between the particle
distribution and the target.

Proposed scheme

Instead of using K parallel chains without interactions, we propose
SGD SGLD

SVGD SGLD + R

noiserep. b/w particles

Parallel SGLD plus repulsion (SGLD+R):
z t+1← z t −

εt
K (K∇ + Γ) + ηt, ηt ∼ N (0, 2εtK/K ).

where K is a permuted block-diagonal matrix such that for each
block (K)i ,j = k(z j ,t, z i ,t).
(i.e., instead of identity or diagonal diffusion matrix as in SGLD, we
use a block-diagonal matrix accounting for distances between
particles)

Since matrix K is definite positive (it was constructed from the
RBF kernel), we may now use the key result from [3] (Theorem 1)
to derive the following property:

Proposition
SGLD+R (or its general form, Eq. (1)) has π(z) = ΠK

k=1π(zk) as
stationary distribution, and the proposed discretizations are
asymptotically exact as εt → 0.

Experiments

Synthetic distributions:
I Mixture of Exponentials (MoE).
I Mixture of 2D Gaussians (MoG).

ESS ESS/s Error of E [X ]
Distribution SGLD SGLD+R SGLD SGLD+R SGLD SGLD+R
MoE 44.3 59.159.159.1 51.5 61.061.061.0 0.39 0.140.140.14
MoG 151.3 169.5169.5169.5 36.336.336.3 32.5 1.42 1.191.191.19

Table: Results for the two synthetic distributions task

(a) Estimation of E [X ] (b) Estimation of E
X 2

Figure: Evolution of estimation during the MoE experiments (5 simulations). 10
particles are used for each sim. and black line depicts the exact value to be
estimated

(a) Prior (b) SGLD (c) SGLD+R (d) MoG π(z)
Figure: Evolution of the particles during the MoG experiment

Bayesian Neural Network:
Feed-forward neural network over some regression tasks from the
UCI datasets.

Avg. Test RMSE Avg. Test LL
Dataset SGLD SGLD+R SGLD SGLD+R
Boston 2.392± 0.018 2.295± 0.0172.295± 0.0172.295± 0.017 −2.551± 0.018 −2.575± 0.007
Kin8nm 0.104± 0.001 0.104± 0.001 0.826± 0.005 0.831± 0.006
Naval 0.008± 0.000 0.008± 0.000 3.379± 0.011 3.428± 0.0193.428± 0.0193.428± 0.019
Protein 4.810± 0.003 4.794± 0.0034.794± 0.0034.794± 0.003 −2.991± 0.000 −2.987± 0.001−2.987± 0.001−2.987± 0.001
Wine 0.522± 0.004 0.514± 0.0040.514± 0.0040.514± 0.004 −0.765± 0.008 −0.750± 0.007−0.750± 0.007−0.750± 0.007
Yacht 0.942± 0.015 0.894± 0.0290.894± 0.0290.894± 0.029 −1.211± 0.020 −1.172± 0.026

Conclusions and Further Work
I We showed how to generate new SG-MCMC methods consisting

in multiple chains plus repulsion between the particles.
I Repulsion between particles improves exploration of the space,

avoiding particle collapse. Plus, we may collect much more
samples than with SVGD.

I Explore different matrices K and Q in order to further accelerate
the sampling process

z t+1← z t − εt [(K + Q)∇ + Γ] + ηt. (1)
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