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Goals and Intro

I Bridge the gap between dynamical systems and ML methods?

I A case study with time series data:

I Predict sales Yt for the Krusty Burger company week after week.

I Few weekly observations. Predictor variables:
• Economical: IPC, ICC, unemployment rate...
• Climate: temperature, precipitation...
• Special events: holiday, sports...
• Investment levels (advertising channels): Out-of-home,

Radio, TV, Online, ...

I Objective: Help Krusty Burger choose its media plan
for the next week.

Background

I ARIMA models. Traditional tool in econometrics:

Yt =
P∑

p=1

αpYt−p +
Q∑
q=0

βqεt−q

I After some baselines, results were not as good as we expected.
We needed more interpretable models which can take into
account experts’ beliefs.

I Dynamic Linear Models (DLMs) come in handy: modular
design.
• Observation eq.:

Yt = Ftθt + εt εt ∼ N (0,Vt) θt ∈ Rd

• State eq.:
θt+1 = Gtθt + Htε

′
t ε′t ∼ N (0,Wt)

I Bayesian Structural Time Series (BSTS): slightly more general.

I Nerlove-Arrow model as a linear ODE:
dA

dt
= qu(t)− δA(t),

with A(t) being the goodwill and u(t) the advertising spending
rate.

Model construction

I We discretize the N-A model, allowing for k different channels

At = (1− δ)At−1 +
k∑
i=1

qiui(t−1) + εt

I Now, we may frame it as a DLM!

θt = Gtθt−1 + Htεt εt ∼ N (0,Wt),

where

θt =


At

q1
...
qk

 , Gt =


(1− δ) u1(t−1) . . . uk(t−1)

0 1 . . . 0
... ... . . . ...
0 0 . . . 1

 , Ht =


1
0
...
0


YNA,t =

[
1, 0, . . . , 0

]
θt + ε′t ε′t ∼ N (0,Vt)

Model augmentation and inference

I Via the superposition principle we can specify the model

Yt = YNA,t + YT ,t + TS ,t + YR ,t

where
• YNA,t is the discretization of the N-A model from before.
• YT ,t is a trend component (local level model).
• YS ,t is the seasonal part (period 52).
• YR ,t are explanatory variables.

I For the regression component

YR ,t = Xtβ + εt, εt ∼ N (0, σ2)

, we use a spike and slab prior that is expressed as

p(β, γ, σ2) = p(βγ|γ, σ2)p(σ2|γ)p(γ).

with γi = 1 iff βi 6= 0.
A usual choice for the γ prior is a product of Bernoulli
distributions:

γ ∼ Πiπ
γi
i (1− πi)1−γi.

I Making the model more robust: we can replace the assumption
of gaussian errors with student T errors

Yt = Ftθt + εt εt ∼ Tν(0, τ 2).

I Inference using MCMC (Gibbs sampler). Obtains draws
ρ(1), ρ(2), . . . , ρ(K ) from the posterior distribution, then the usual
predictive equation

p(ȳ |y1:t) =

∫
p(ȳ |ρ)p(ρ|y1:t)dρ.

Decision Support System

maximize
u(t+1),1...u(t+1),k

E [ȳt+1|y1:t, xt+1, ut+1]

subject to
k∑
i=1

u(t+1),i ≤ bt+1

Var [ȳt+1|y1:t, xt+1, ut+1] ≤ σ2,
where bt is the total budget and σ controls the risk.
I Used to evaluate an initial set of investment plans.

Experiments and Results

Our best variant achieved

MAPE :=
100%

T

T∑
t=1

|yt − ŷt|
yt

≈ 4.59%

Conclusions

I DLM (BSTS) can provide a nice framework to mix dynamical
systems and data-driven models.

I The firm can optimize in the investment levels, maximizing
expected global sales yet minimizing a risk metric.
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